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Kinetic Equation in the Kinetic Region of the Dilute and 
Nonuniform Electron Plasma 
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Mori's scaling method is used to derive the kinetic equation for a dilute, non- 
uniform electron plasma in the kinetic region where the space-time cutoff 
(b, t~) satisfies AD << b << Ii, ~'D << tc << ~'r, with '~D the Debye length, 
rg 1 = ~o; the plasma frequency, and lr and ~'I the mean free path and time, 
respectively. The kinetic equation takes account of the nonuniformity of the 
order of l~ and ,~ for the single- and the two-particle distribution function, re- 
spectively. Thus the Vlasov term associated with the two-particle distribution 
function is retained. This kinetic equation is deduced from the kinetic equa- 
tion in the coherent region obtained by Morita, Mori, and Tokuyama, where 
the space-time cutoff of the coherent region satisfies Av >> b >> ro, "rD >> 
tc >> ~'o, with ro the Landau length and ~'0 the corresponding time scale. 

KEY WORDS: Coarse-graining in space and time; kinetic equation; B BG KY 
hierarchy; kinetic scaling; coherent scaling; nonuniform electron plasma. 

1. I N T R O D U C T I O N  

Recently,  Mor i ' s  scaling me thod  (1~ for  space- t ime  coarse-gra in ing has been 
used to clarify proper t ies  of  f luctuat ions in t~-space (2,a~ and the regime of  
val id i ty  of  var ious  kinetic  equat ions  in p lasmas,  such as the B a l e s c u - L e n a r d -  
Guernsey  equat ion.  (4-6~ The kinetic processes in a p l a sma  are found  to be 
charac ter ized  by two regions,  the coherent  and  kinetic regions,  where the 
kinet ic  region is a subregion  o f  the coherent  region.  The divergence-free 
kinetic  equa t ion  in these two regions has been systemat ical ly  derived by apply-  
ing Mor i ' s  scaling me thod  for  space- t ime  coarse-gra in ing to the B B G K Y  
hierarchy equat ions  and  it has  been demons t r a t ed  that  the kinetic equat ion  
in the kinetic  region can be r ep roduced  f rom the kinetic equat ion  in the 
coherent  region by in t roduc ing  fur ther  coarse-graining.  
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Let us consider a classical electron gas with a small mean particle density 
c in a neutralizing, smeared-out background of positive charge with charge 
density ce, where e is the electronic charge. In this plasma the coherent region 
is defined by the space-time cutoff (b, to) which satisfies 

hD >> b >> r0, ~D >> tc >> ro (1.1) 

The space-time cutoff (b, to)of the kinetic region satisfies 

b >> b >> AD, ~s >> t~ >> rh (1.2) 

Mori's scaling method leads to the following scalings of the characteristic 
quantities: for the coherent region 

;tD--~ LAD, ro--+ ro, ls-+ L2ls, c---~ L -2c  (1.3) 

and for the kinetic region 

lr -+ Lls, ro ~ ro, AD --+ Lll2AD, c --+ L -  lc (1.4) 

The space-time @1, t) of the single-particle distribution function f(1 ; t) = 
f(p,  rl ; t) is scaled in both regions as 

rl --+ Lr~, t -+ Lt  (1.5) 

In the work of Morita et al. <2> the collision term, which ensure the 
approach o f f ( l ;  t) to the local Maxwell distribution function, consists of 
three terms: 

C~(f) = B l ( f )  - L~(f)  + X~( f )  (t.6) 

where B~(f)  is the Boltzmann collision term with the Coulomb potential and 
L~(f)  is the Landau collision term. The third term X~(f )  of Eq. (1.6) is a 
collision term first derived in Ref. 2. 

In this paper, the kinetic equation in the nonuniform electron plasma is 
derived by expanding the collision term C l ( f )  in terms of the small parameter 
1/L. The derivation of this kinetic equation is given in Section 2. Section 3 is 
devoted to a discussion. 

2. D E R I V A T I O N  OF THE K INETIC  E Q U A T I O N  

Since the Boltzman and Landau collision terms are covariant in the 
kinetic scaling, <2~ the expansion of the collision term C~(f)  in terms of the 
small parameter 1/L comes only from the collision term Xa(f) ,  which is 
defined as 

Xl(f) = f d(2) 012~/ ds e~<~ +~+M3>O~2f(1 ; t ) f (2;  t) (2.1 a) 
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with 

8 e2 ( ~ 8 )  
0 1 2  - -  8r21 ~-~" '8p2 ap~" = 021 (2.1b) 

M1 = P2 - Pl. 8 
m c9r21 

(2.1c) 

(2.1d) 

and 

M3 
m c%r~ 

m c2rl 

t 
+ c(1 + P~2)Jd(3) 0~af(3; t)  

8r~ ~p: (2. le) 

�9 (rl; t) = c d(3) ~ exp r31,~r~ /(p, ,  r~; t) (2.1f) 

where d ( 2 ) =  dr2 dp2, r21 = r 2 -  r~, and P~y is the exchange operator 
between i andj. The term Xz(f) is the collision term in the coherent region and 
scales as Xl(f)---> L~ In the coherent scaling of Eqs. (1.3) and (1.5), 
terms of (M~ + 2142 + Ma) scale as Mz + M2 + 343 ~ L-*(M1 + M2 + Ma). 
On the other hand, these terms scale differently in the kinetic scaling of Eqs. 
(1.4) and (1.5). The lowest order terms (M1 + M2) scale as (M~ + 342) 
L-  1/2(M1 + M2) and lead to the Balescu-Lenard-Guernsey collision term, as 
is shown in Ref. 2. The term 343 scales as M3--~ L-1M3. By keeping this 
term 1143, we can obtain the collision term in the nonuniform electron plasma. 

We now define the function Kq(p2, p~, rz; t) as 

Kq(p2, Pz, rl ; t) = f dr2~ exp(iq.r2J 

5 x ,:Is exp[s(M1 + M2 + Ma)]O~J(1;t)f(2; t) (2.2) 

Making use of this function, we can write Eq. (2.Ia) as 

x l ( f )  = -ifdqVqq.~-~fdo~Kq(p~,pl,  rl; t)  (2.3) 

where Vq = e2/2~q 2. In the lowest order of the kinetic scaling of Eqs. (1.4) 
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and (1.5), Kq and )(1 scale as Kq -+ LKq and X, ---> L~ respectively. In order 
to obtain the expression for Kq, we use the following equations: 

o~dS exp[s(M1 + M2 + Ma) 

= fo | d,  exp(sM1) + fo ~ du [exp(uMOl(M2 + Ma) 

x f[ds exp[s(M1 + M2 + Ma)] (2.4) 

f dr2~ exp(iq-r2~)fo ~ dsexp(-sg21.~-~2~) Q(r21) 

: ejo ~ ds exp(iq.g21s) rj dr21 exp(iq.r21) Q(r21) (2.5) 

where g21 = (P2 - pl)/m and Q(r21) is an arbitrary function of r21. Substitut- 
ing Eq. (2.4) into Eq. (2.2) and making use of Eq. (2.5), we find 
Kq(p~, Pl, rl ; t) 

= ~- q . ( p ~  - p ~ ) / m  + i { ( p l / m ) . ~ / ~ r l  - ( ~ * / ~ r ~ ) . ( ~ / ~ p l  + o / e p ~ ) }  

x A(p2, p~, rl ; t) (2.6) 

A(p2, p~, rl;  t) = A(~ p~, rl; t) + A(~)(p2, Pl, rl; t) (2.7) 

where the first and the second terms in the curly brackets in the denominator 
of Eq. (2.6) are scaled by L-  1/2 and L-  1, respectively. The terms A (~ and A <1) 
scale as A <~ ~ LA  <~ and A (1) -+ LII2A m. The explicit form of A <~ and A (1) 
will be given in the subsequent analysis. We now follow Guernsey's analysis, 
using the following identity and the "barr ing" operation: 

1 1 1 I 
Y - -  (2.8) 

X +  Y X X X +  Y 

f (u ,  r l ; t )  = fdpl 8(u q'Pl'~ ~ , m  - ]J tpl ,  rl ;  t) (2.9) 

Making use of Eqs. (2.8) and (2.9), we can calculate the function Gq(p~, r, ; t) 
from Eqs. (2.6) and (2.7) as follows: 

t) = f dp2 Kq(p2, Pl, r, ; t) = G~~ rl ; t) + G(q*)(pl, rz ; t) Gq(pl, rl 
J (2.t0) 
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where 

G~~ r~; t) = dw .... i A(m(w, p~, rl ;  t) 
r r  j _  m "1,~ - -  U 

= L~(pz, r, ; t) + iL2(pz, r; ; t) 

f ( q'P2'~ ~(ov_ X(~ pl, r I ; t )  = dp28 w -  m ] a  vw, pz, r l ; t )  

LI(pl, rl ; t) = - r , ;  ] 
LIpI J 

+ ql(PZ, rl ; t )pl  + q2(Pz, rl ; t)p2 
Ip? 

(2.11a) 

(2.11b) 

(2.11c) 

qT 
L2(px, rl ; t) = ~ {D~(px, rz ; O f ( u ,  r~ ; t)  - f(1 ; t)/)q(u, rl ; t) (2.1 ld) 

4Tre 2 ?f(px, rx; t) (2.1 le) Dv(p~, r~ ; t) = - ~  q. apx 

p = pl + ip2; p2(u, rl ; t)  = zrcDq(u, r 1; t), 

pz(u, rz; t)  = 1 - H[p2(u)] (2.11f) 

q l ( p , ,  rl  ; t) = - 7rDv(pl,  r~ ; t)H[f(u)] + f ( 1  i t) H[p2(u)] (2 .11g)  
c 

q2(Pl, rl ; t) = zrDq(pl, rl ; t ) f (u ,  rz ; t )  
f(1 ; t) 
- -  P2 (2.11 h)  

1 p dw p2(w) (2.11i) 
H[p2(u)] rr co w -- u 

G(v ~ scales as G(~ ~ -+ LG{  ~ and the Balescu-Lenard-Guernsey collision term 
B L I ( f )  is found from Eqs. (2.3), (2.10), and (2.11) as 

8 
B L I ( f ) =  8zr~f  dq f dpz q.~p---~ [ -~  2 3(q.glz)q- ( ~ 1  ~p2)f(1;  t)f(p2, rx; t) 

(2.12) 

The collision term which takes account  of  the streaming and Vlasov terms of  
the two-particle correlation function can be derived from the next-order term 
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G~l~(pl, rz ; t) defined as 

G~l)(pl, rl; t) = dw i A(Z)(w, Pl, rl ; t) 
"n" j _ ~  W--~/ 

f + ~/-c pl 8 dw 1 ~A(~ p~, r~; t) 
~" In ~ r  1 ~ w - -  U cOW 

~ccOCb.( ~ 1 0 fOA(~ pl, r z ' t )  
~r Or~ 2 o, d w - -  - _ w - u a w  L ~ 

~P~ " t)} 

(2.13) 
where we have used the following equation to derive Eq. (2.13): 

f dw 2 - dw 1 eB(w) (2. ! 4) 
co oo W - -  U O W  

with B(w) an arbitrary function of w. The various quantities of Eq. (2.13) are 
defined as 

A<l~(w, Pl, rl ; t) 
,~Vc 

= ~ c  [A~(w'  Pl, rl ; t) + iA}l>(w, Pl, rl ; t)] 
77" 

L1(Pl , rl; t)(~ ~]~q(W, rl; t)_ ~n(w ' rl; t) 1 ~LI(PI' rl; ~) ~r~ ~q 
~Dq(w, rl ; t) 2 e[~(w, rz ; t) 

�9 ~rl q2 Dq(pi, rl ; t)q. ~rl 

+ Dr(p1, rl; t)Ll(w, r; t ) l r=r l+Dq(pl ,  rl; t)(~-~l ~q)Ll(w, rt; t) 

+ 2f (1; t )  q.ODq(w,r~;t)  2 Dq(p~ , r . t )q .Of (w ,  r l ; t )  
cq 2 ~r~ cq 2 ' Orl 

f(1;  t)/Srz(w, rl; t) + Dr(p1, rz; t ) f ( w  ' r; t)Ir=~ ~ 
C C 

+ i(L2(pl, r l "  t ) [~q ~Dq(w, rl; t) /)rl(W, rl; t)] 
' Orl 

_ 0L2(p~, l" 1 ; t ) .~Oq(w,  r I ; t ) )  (2.15a) 
Oq 0rz 
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A(~ PI, r l ;  t) 

1/_ {A~)(w ' PI, rx ; t) + ia}~ Pl, rl ; t)} 
q'r V C  

= ~ {2Dq(pl, rz ; t)/)q(w, r~ ; t)f(u, rz ; t) 

- /gq(u, r~ ; t)[/gq(w, r~ ; t)f(1 ; t) + Dq(p~, rl ; t)f(w, r~ ; t)]} 

- i P~ {Dq(w,r~ ' t ) f (1; t )  - Dq(p~,rl;t) f(w, rz, t)} (2.15b) 

A(~ PI, rl, t) 

= 7r~cc {A~>(P2' p~' r~ ; t) + iA(?>(p2, p~, r~ ; t)} 

77 

ipl2 {2Dq(p~, r, ; t)Dq(p2, rl ; t ) f (u;  t) 

- Dq(u, rl ; t)[Dq(p2, rl ; t)f(1 ; t) + Dq(pl, r~ ; t)f(p2, r~, t)]} 

- i  Pz c[pl 2 (Dq(p2, r~ ; t)f(1 ; t) - DQ(pI, r~ ; t)f(p2, r~ ; t)} 
(2.15c) 

D~(w, r l ; t ) = 4 7 r e 2 ( d P z 3 (  w q 2  j - q z ) ~ ) f f  0rz ~3f(P2' rx; t )6qp2  (2.15d) 

4rre~ 0f(1; t) a (2.15e) D~(pl, r~; t) - q2 8p~ ~r 

Making use of Eqs. (2.3), (2.10), (2.13), and (2.15), we find the collision term 
Yl(f) ,  with which the kinetic equation for a dilute, nonuniform electron 
plasma can be written as 

@t + ~'~--~)f(1;  t) = cJl(f)  + c3/2Yl(f) (2.16a) 
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with 

J~(f) = Bl( f)  - Lx(f) + BLI(f)  (2.16b) 

f 8 (H[.4~'(u)]+ AT~l)(u, pl, r,;  t) rl(/)  = dq v . q . ~  

] } + m a r , [  l a w  (u) - aw w=4 

80 ( [ 8 2 A ' ~  ] 82A~~ pa, r l ; t ) l  } 
ar, H a--~--g~ 0w (u) - ap~ aw w= 

_ ~__~/~,,1.vHk~(u ) S q )  ( I - 8 ' }  ~ ] - 8A~~ (2.16c) 

where 

A~)(w, p~, r, ; t) + iA~~ Pl, r, ; t) 

= f d p 2 8 ( w  q'P2~ [ 8A~~ p> rl" t) p,, r~; t)] - --m--] [ ~p-~ , + i 8A'(p2'sp 2 (2.16d) 

The explicit expressions for J~(f) can be seen in Refs. 2 and 3. Both of the 
terms Jz(f) and Y~(f) scale as Jz(f) ---> L~ and Yz(f) --> L ~ Yz(f). Thus the 
second term on the r.h.s, of Eq. (2.16a) cannot be derived by the density 
expansion, The first two terms of Eq. (2.16c) represent the correction of the 
shielding effect associated with the nonuniformity of the single-particle 
distribution function. The terms (p~/m).(8/&~){...} and (Sqb/&~).{...} repre- 
sent the contributions from the streaming and the Vlasov terms of the two- 
particle distribution function, respectively. 

3. D I S C U S S I O N  

In the conventional theory of deriving the Balescu-Lenard-Guernsey 
equation, (~-6~ the following assumptions (or equivalent ones) are usually 
introduced(7): (a) the single-particle distribution function is independent of 
position, (b) the relaxation time of the two-particle correlation function is 
much shorter than that of the single-particle distribution function. 

In attempts to derive the kinetic equation for a nonuniform electron 
plasma along the lines of conventional theory, (7-1~ the following condition is 
assumed: 

f(p, r, t) = fo(p, t) + f l ( p , r ,  t); fo >>fl (3.1) 

and the linearized kinetic equation for fl(p, r, t) is derived and discussed 
qualitatively. The main idea of these theories can be understood as follows. 
In a neutral gas, the relaxation time of the single-particle distribution function 
to the Maxwellian is the mean free time, while the relaxation time of a non- 
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uniform gas to a uniform state is the macroscopic time scale. Therefore the 
relaxation time of the momentum and real space are completely different in 
the neutral gas. Considering this fact, the single-particle distribution function 
in a plasma is divided into two terms as shown in Eq. (3.1). This assumption, 
however, is not applicable to a plasma due to the long-range nature of the 
Coulomb force. 

In the conventional approach to obtaining the kinetic equation for a non- 
uniform electron plasma, it is extremely difficult to derive it without making 
some assumptions. In the author's opinion, these assumptions have been 
motivated by a desire to simplify the problem rather than by the physics 
involved. Thus, to tackle such problems, a new method is needed. Mori's 
scaling method is such a method. In fact, we did not have to make the 
assumptions of the conventional theory in order to derive the kinetic equation 
for the dilute, nonuniform electron plasma. 

In Mori's scaling method, the kinetic equation in the kinetic region 
includes the streaming term since the single-particle distribution function 
includes the nonuniformity of the order of the mean free path. The Vlasov 
term vanishes because the force range of the Coulomb force is of the order of 
AD, so that this term does not appear in the nonuniformity of the order of ly. 
Both terms, i.e., the streaming and Vlasov terms, appear in the two-particle 
correlation function as a next order in the expansion of the small parameter 
1/L. The Vlasov term appears since the characteristic length between the two 
particles is taken to be of the order of AD. Thus in the lowest order we repro- 
duce the Balescu-Lenard-Guernsey equation. By taking account of the next- 
order term in the expansion of the small parameter l /L ,  we derive the kinetic 
equation (2.16) for the dilute, nonuniform electron plasma, where the 
characteristic length of the nonuniformity of the single-particle distribution 
function is taken as l~, while the characteristic length between the two particles 
for the two-particle distribution function is AD. These two conditions for the 
single- and two-particle distribution functions can be realized when a plasma 
without a static magnetic field is produced in the laboratory. 
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